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Abstract
The ubiquity of portable mobile devices equipped with built-in cam-
eras have led to a transformation in how and when digital images
are captured, shared, and archived. Photographs and videos from
social gatherings, public events, and even crime scenes are com-
monplace online. While the spontaneity afforded by these devices
have led to new personal and creative outlets, privacy concerns of
bystanders (and indeed, in some cases, unwilling subjects) have re-
mained largely unaddressed.

We present I-Pic, a trusted software platform that integrates dig-
ital capture with user-defined privacy. In I-Pic, users choose a level
of privacy (e.g., image capture allowed or not) based upon social
context (e.g., out in public vs. with friends vs. at workplace).
Privacy choices of nearby users are advertised via short-range ra-
dio, and I-Pic-compliant capture platforms generate edited media
to conform to privacy choices of image subjects.

I-Pic uses secure multiparty computation to ensure that users’
visual features and privacy choices are not revealed publicly, re-
gardless of whether they are the subjects of an image capture. Just
as importantly, I-Pic preserves the ease-of-use and spontaneous na-
ture of capture and sharing between trusted users. Our evaluation of
I-Pic shows that a practical, energy-efficient system that conforms
to the privacy choices of many users within a scene can be built and
deployed using current hardware.

1. INTRODUCTION
The spontaneity afforded by mobile devices with cameras have

led to new creative outlets that continue to have broad and last-
ing social impact. As every facet of event reporting, ranging from
personal journals to war correspondence, is transformed, however,
there is a growing unease about the dilution of privacy that in-
evitably accompanies digital capture in public, and in some cases,
private fora. This paper describes I-Pic, a platform for policy-
compliant image capture, whereby captured images are automat-
ically edited according to the privacy choices of individuals pho-
tographed. I-Pic’s design was motivated by a user-study, described
in Section 2, which found that:
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Capture policies should be individualized: Privacy concerns vary
between individuals. Even in the same situation, different subjects
have different preferences. This finding motivated I-Pic to preclude
options that impose blanket or venue specific policies [1, 2, 3].

Policies should be situational: Study subjects stated consent to be
photographed at certain times, places, events, or by certain photog-
raphers, but would make different choices in other circumstances.
This motivated I-Pic to not impose a static policy per individual [4],
and to avoid solutions that require prior arrangements between spe-
cific subjects and photographers (whitelisting or blacklisting).

Compliance by courtesy is sufficient: An overwhelming majority
of our subjects stated that they would choose to comply with the
privacy preferences of friends and strangers, especially if doing so
didn’t interfere with the spontaneity of image capture. I-Pic pro-
vides such a platform but is not meant to stop determined users
from taking pictures against the wishes of others; indeed, these
users could simply use a non-I-Pic compliant device.

Consider a strawman system where mobile devices broadcast
their owner’s privacy preferences via Bluetooth. Without additional
information, a camera would have to edit the image according to the
most restrictive policy received, even if the corresponding person
does not appear in the image at all! To be practical, polices must be
accompanied by a visual signature so that a camera can associate a
person captured in an image with a policy.

However, Bluetooth transmissions can cross walls, which would
create a serious privacy problem if visual signatures were broadcast
in the clear: Next-door neighbors could identify persons whom they
have never seen or photographed! To avoid this problem, I-Pic re-
lies on secure multiparty computation (MPC) to ensure that a cap-
ture device learns only a person’s privacy choice, and only if that
person was captured; otherwise, neither side learns anything.

User studies and privacy requirements inform the architectural
components of I-Pic: Users advertise their presence over BLE (Blue-
tooth Low Energy): these broadcasts are received by I-Pic-compliant
capture platforms. When an image is taken, the platform deter-
mines if any of the captured people match the visual signatures of
nearby users using MPC. If there is a match, the platform learns
the policy and edits the image accordingly, e.g., by occluding the
person’s face. To maintain the responsiveness of image capture,
unedited images are shown to the photographer immediately, but
cannot be shared until the image is processed in the background.

After presenting the results of our online survey in Section 2, we
describe the main technical design of I-Pic in Section 4, along with
prior work in face recognition and cryptography we build on. Next,
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Figure 1. Variety in privacy preferences under similar physical, social and image usage scenarios

we presents results of an experimental evaluation in Section 5. We
discuss related work in Section 6 and conclude in Section 7.

2. ONLINE SURVEY

I-Pic’s design was informed by an online survey designed to
provide a broader perspective on personal expectations and desires
for privacy. The survey, and experiments with I-Pic, were con-
ducted with user consent under an IRB approval from the Univer-
sity of Maryland. The survey included an optional section on user
demographic, including gender, age, and ethnicity.

We publicized the survey on mailing lists and online social net-
works on November 10th, 2015. The survey is available online at
http://goo.gl/forms/6tGG0YmFFG, and the results here
present a snapshot of all responses collected on December 4th,
2015. As of this date, there were 227 responses, with 208 respon-
ders also answering the demographic questions. Respondents rep-
resented 32 countries. The age distribution is shown in Table 1.

Age group Fraction of participants
less than 20 years 9.2%

20 - 30 years 56.6%
30 - 40 years 25.1%

40 - 50 4.8%
more than 50 years 3.9%

Unspecified 0.4%
Table 1. Age groups of survey participants

Questions in the survey envisioned different venues and activ-
ities and presented participants with different privacy options: (a)
agree to be captured in any photograph, (b) agree, but would like a
copy of the image, (c) please obscure my appearance in any image,
(d) can decide my preference only after viewing the photo, or (e) do
not wish to be captured in any photograph. Participants were asked
to choose the privacy action they considered most appropriate for
each scenario (Figure 1(a)). To help visualize a common scenario
and to provide perspective for others, participants were shown an
image of people on a platform waiting to board a train, some with
faces clearly visible. The survey also gauged individual’s level of
comfort depending on their relationship to the photographer or the
other subjects in the photograph (Figure 1(b)). Finally, we asked
how potential uses of an image influence responders’ level of com-
fort with being captured (Figure 1(c)).

In Figure 1(a), the x-axis is sorted by the percentage of respon-
ders who chose the most private action of "do not wish to be cap-
tured", increasing from left to right. Our results show a mix of pri-
vacy concerns for different scenarios. In Figures 1(b) and 1(c), the
x-axis is sorted by the percentage of responders who were much
less comfortable with photography, increasing from left to right.
Once again, for these social situations or image usage scenarios,

the privacy concerns of responders is not uniform. These results
demonstrate the necessity of diversity in privacy policy, and argue
against venue based policies that cannot be customized for individ-
uals [2, 5].

Unsurprisingly, privacy preferences are not unanimous for any
scenario; there are, however, trends. Responders tend to be more
restrictive in venues such as beaches, gyms and hospitals (in Fig-
ure 1(a)); with strangers in a social situation (in Figure 1(b)); and
when images can potentially be shared online (in Figure 1(c)). These
trends can be useful as they suggest default policies appropriate for
different situations.

Number of privacy preferences Fraction of participants
1 12.7%
2 27.8%
3 32.2%
4 19.4%
5 7.9%

Table 2. Variety in privacy preferences for same person

Table 2 shows the percentage of responders versus the number
of different privacy choices for each responder. The table shows
that individuals prefer different privacy choices depending on the
given situation. This finding illustrates the utility of context-specific
policies, and demonstrates the shortcomings of individualized hard-
coded policies, e.g., bar-codes on clothing [4].

The survey asked whether responders cared about by-stander
privacy when respondents themselves capture images. An over-
whelming majority (96.47%) answered in the affirmative, motivat-
ing a system such as I-Pic. About a quarter (28%) agreed if the
overhead of the solution was low; another quarter (26%) agreed if
the aesthetics of images remain good.

Respondent Selection Bias The survey was voluntary and anony-
mous. The URL for the survey was advertised on mailing lists and
social networks used by the authors and their friends, leading to
a bias in how respondents learned about the survey. However, we
believe that the results presented here still have merit as they repre-
sent views across different age groups and ethnicities. The results
overwhelmingly support the thesis that users often desire privacy
from digital capture in social situations, and further that “one-size-
fits-all” solutions to image privacy are not effective. Moreover, as
photographers, the responders overwhelmingly consider bystander
privacy to be important. These observations inform I-Pic’s design,
described next.

3. I-PIC ARCHITECTURE

3.1 I-Pic overview
Figure 2 shows I-Pic’s major components and their interaction.

The two types of principals in the system are bystanders or users



who may be photographed, and photographers who capture im-
ages. Both are assumed to operate an I-Pic-compliant platform.
Associated with each principal is a cloud-based agent to which the
principals offload compute-intensive tasks. The photographer is as-
sociated with a Capture Agent; each bystander is associated with a
Bystander Agent. We note that agents are logical constructs; func-
tions provided by the agent can be implemented within mobile de-
vices should I-Pic be used without wide-area connectivity.
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Figure 2. I-Pic major components

I-Pic requires a one-time Association protocol between users
and their agent. Users periodically broadcast their presence us-
ing BLE. Once an image is captured, the Face Detection, Feature
Extraction, and Secure Matching protocols are executed. If a user
is identified, the capture platform uses the Policy Enforcement pro-
tocol to modify the photograph as requested. We describe these
sub-protocols next.
Association: Users select an agent as a proxy and provide it with
photographs, which are used to train an SVM classifier for face
recognition. A user trusts her agent not to leak her visual signa-
ture. The association protocol also exchanges a master key between
agent and user’s device, which is used to generate session keys in
the future.

Next, users initialize their privacy profile, which is locally stored
on their device, by choosing relevant contexts based on location
(e.g. office, home, gym, bar/restaurant, public spaces) and time
(work hours, off-work hours), and by choosing an appropriate ac-
tion for each context (agree to appear with face, blur face).
Periodic Broadcast: Users periodically broadcast a encrypted pol-
icy that specifies how to treat the user’s picture if she appears in a
photograph. This broadcast also includes sufficient information to
identify the user’s agent. The policy is encrypted with a session key
generated using the current time (divided into 15-minutes epochs)
and the master key exchanged with the user’s agent.

Capture platforms receive and cache policies. Once a photo-
graph is captured, if a user is identified, then the associated policy
can be decrypted.
Secure Matching: Upon image capture, the platform detects and
tries to recognize faces. These components leverage our prior work

in face detection [6] and facial feature extraction [7], as detailed in
Section 4.1.

The capture platform encrypts the extracted features and up-
loads them to its agent, along with the network identifiers of all
bystander agents that it has received as broadcast recently. The
Capture Agent and the Bystander Agent compare extracted features
and a bystander’s classifier weight vector by implementing a secure
dot-product protocol [8] followed by a secure threshold compari-
son protocol based on garbled circuits [9]. If the threshold passes,
then the session key used to encrypt user’s policy is revealed to the
capture platform.

Policy Enforcement: When granted a session key for a user, the
capture platform decrypts the corresponding user’s privacy policy
and performs the action requested. Our current implementation
only supports face obfuscation, which we implement using the OpenCV
library. More sophisticated techniques exist. For instance, it is pos-
sible to morph a face into another face [10] instead of blurring it.
Furthermore, it is also possible to remove an entire body from an
image and extrapolate the background so that the removal is not ob-
vious [11]. While such advanced image processing techniques are
not the subject of this paper, I-Pic can take advantage of them.

If a captured face cannot be matched against any bystander, but
all advertised policies have been evaluated, I-Pic defaults to blur-
ring the face. This protects the privacy of bystanders who either do
not own a smart device or are not I-Pic users.

Similarly, all unmatched faces are blurred if the identification
protocol does not complete for some policies, likely due to lack of
network connectivity. The platform maintains an encrypted copy of
the original image, which can be used to release an unblurred face
in the original image as the protocol completes in the future.

3.2 Threat model
I-Pic’s cryptographic protocols ensure that a non-compliant cap-

ture device cannot learn the feature vectors of a bystander who does
not appear in a captured image. For privacy policies of bystanders
to be correctly applied, the capture platform on users’ devices is
assumed to implement the I-Pic protocol correctly. Third-party ap-
plications installed on users’ devices are untrusted.

Users of capture devices may be able to bypass I-Pic by “root-
ing” their device; a different implementation could integrate I-Pic
into the device firmware or implement the protocol on a trusted
hardware platform, thus raising the bar for bypassing I-Pic’s pri-
vacy protection. We dismissed this approach, because uncooper-
ative photographers could in any case use a non-I-Pic compliant
camera. Our goal instead is to enable cooperative photographers to
respect bystander’s privacy wishes in an unobtrusive manner, with-
out introducing new attack vectors. We believe that most users wel-
come the ability to automatically comply with bystander’s wishes,
as it enables them to take pictures freely, without worrying whether
they might offend others. This was also observed in our online sur-
vey (Section 2), where 96% of the participants indicated that they
cared about bystanders’ privacy.

The Bystander Agent must be trusted by the bystander not to
leak her visual signature. The Capture Agent, on the other hand,
does not have access to either the users’ visual signature stored on
the Bystander Agent or the features vectors extracted by the cap-
ture device. However, Bystander Agent and Capture Agent are as-
sumed not to collude, else they could joinly extract the feature vec-
tors of people captured in an image. Capture Agent is additionally
expected to construct the garbled circuit used for secure threshold
comparison (described in Section 4.2) accurately.

Cloud agents learn when an I-Pic compliant device captures an
image, and the Capture Agent learns the IP address of that cam-



era device (Technically, both could be spoofed since the request
may use an identifier without capturing an image, and the source
IP address in a request could be that of a forwarding relay). I-Pic
protocols are designed to ensure that the cloud agents do not learn
if a user appears in an image, or the user’s current context or policy.
The following Section 4 describes the I-Pic protocols in detail.

4. I-PIC DESIGN

Next, we describe the design of I-Pic in more detail. Figure 3
shows the I-Pic workflow in normal operation.
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Figure 3. I-Pic workflow

I-Pic compliant devices broadcast their encrypted (userid, policy)
pairs periodically. I-Pic compliant capture devices additionally dis-
cover other Bluetooth devices periodically and add any received
pairs to a local cache of nearby users. The entries are flushed from
the cache when a device’s broadcast has not been received for 10
minutes.

When an image is captured, I-Pic intercepts the raw image data.
The captured image is available for viewing immediately but cannot
be shared until the image is processed. A background task runs
the vision pipeline described below in Section 4.1 to detect faces
and extract feature vectors for each. Next, for each feature vector
extracted from the image, the background task performs the secure
matching protocol described below in Section 4.3 to determine if it
matches with the registered classifiers of any of the bystanders in
the cache, and decrypts the policies of any matching bystanders.

Finally, the I-Pic background task edits the image according to
the policies of the users captured in the image. By default, any face
detected in the image that did not match the signature of a bystander
is occluded. This conservative choice errs on the side of privacy in
case of a bystanders who does not carry a mobile device or does
not use I-Pic, whose BLE broadcast was not received, or whose
visual signature did not match due to a false negative of the face
recognition.

4.1 Image processing
The goal of I-Pic’s image processing is to identify people cap-

tured in the image, extract visual signatures for each person, and
match these signatures with those advertised by nearby bystanders.

Detecting and recognizing people in images is an active area of
research in computer vision. The current I-Pic prototype relies on
face recognition as a well-understood and natural technique for de-
tecting and recognizing people. More general techniques for people
detection and recognition based on full-body visual signatures can
be integrated into I-Pic in the future.

In the following, we briefly describe I-Pic’s face detection, fea-
ture extraction, and face recognition pipeline.

Face detection: I-Pic must detect faces with high recall, ensuring
that bystanders’ faces are detected with high probability regardless
of size, focus, pose, angle, lighting, or partial occlusion. Unlike
the primary subjects of an image, bystanders are not posing for the
camera, may be in the background, poorly lit, or out of focus, which
makes their detection challenging.

We use the open source HeadHunter [6] prototype developed as
part of our prior work on face detection. HeadHunter achieves face
detection recall of ∼95% on standard image datasets like the An-
notated Faces in the Wild (AFW) [12]. For I-Pic, we ported Head-
Hunter to a mobile tablet with a GPU, as described in Section 5. As
we will show in Section 5.4.3, HeadHunter is superior to other face
detectors available for mobile platforms.

Feature extraction: We use the state of the art person recognition
method from our prior work [7]. Unlike typical face recognition
systems that can recognize only the frontal faces, our person recog-
nition system has been trained to generalize across head pose by
utilizing hairstyle and context information. Due to this generaliza-
tion, it outperforms other cutting-edge face recognition systems in
a social media photo setting [13], where individuals often do not
pose for the camera. Since I-Pic aims at identifying bystanders,
this person recognition system is highly relevant.

Our person recognition system is based on a convolutional neu-
ral network (AlexNet [14]) pretrained on the ImageNet [15] clas-
sification task, and fine-tuned for the person identification task on
People In Photo Albums (PIPA [13]), a large database of people in
social media photos. While our prior work [7] uses five different
body regions (face, head, upper/full body, and scene) to maximize
the performance, we only extract features from the face region, and
denote this cue as FNet.

Given a face, the original FNet extracts a 4096-dimensional fea-
ture vector. To ensure the efficiency of the secure matching algo-
rithm, which is inversely proportional to the number of dimensions,
we reduce this feature vector to 128 dimensions. We found that us-
ing the neural network itself for dimensionality reduction results in
a smaller drop in overall recognition accuracy than using Princi-
pal Component Analysis. Specifically, we insert a 128-dimensional
fully connected layer before the last layer in the AlexNet, randomly
initialize the weights, and tune it using Stochastic Gradient De-
scent. Our FNet features are extracted from this 128-dimensional
layer after forward passing Headhunter face detections through the
network. All the training and feature extraction in neural networks
are done using the open source deep learning framework Caffe [16].

Face recognition: When a user registers, I-Pic extracts FNet fea-
tures from the set of portraits he or she provides. Per-user SVM
classifiers are then trained on the FNet features, where positive ex-
amples consist of the portraits provided by the corresponding user,
and negative examples from the other users and ∼12K celebrity
faces in the Labeled Faces in the Wild dataset (LFW) [17]. On av-
erage, there are ∼15 positive examples per user, captured with dif-
ferent viewpoints and facial expressions. Users may subsequently
provide additional images for training, for instance, if they start to
wear glasses or grow a beard. The liblinear [18] package has been
used to train the SVMs.



In normal operation, HeadHunter detects faces in captured im-
ages, and the corresponding FNet features are extracted. I-Pic com-
pares the feature vector of each detected face against the trained
SVM classifiers of each bystander using a dot product computation.
If the dot product is above a certain threshold, the classifier indi-
cates a match. To ensure privacy, I-Pic computes the dot product
and threshold comparison as part of a secure multiparty computa-
tion between the photographer’s capture agent and each bystander’s
agent.

Before we describe the secure matching protocol, we briefly re-
view the underlying crypto protocols.

4.2 Cryptographic Protocols
I-Pic composes two standard protocols to achieve secure match-

ing: secure dot product and garbled circuits.
Secure dot product: The secure dot product protocol allows two
parties, each with a private vector, to compute the vector dot prod-
uct without divulging the vectors. We use the protocol described
in [8], which is based on the Paillier homomorphic encryption scheme [19].
We use the notation JaKpk to represent the encryption of a number a
using a public key pk. The Paillier encryption scheme is additively
homomorphic, i.e., given JaKpk and JbKpk, it is possible to compute
Ja+ bKpk = JaKpkJbKpk. It follows that given JaKpk and an integer
c, one can compute JcaKpk = (JaKpk)c. These two primitives can
be combined to compute the dot product securely. More detail can
be found in [20, 8].

A straightforward application of this protocol in I-Pic, however,
faces two problems: First, the capture device learns the dot prod-
ucts, which would enable a ‘rogue’ capture device to learn the clas-
sifier weight vector of each bystander. By computing dot products
using a series of standard basis vectors (vectors that have a value of
one in one dimension and zero in all others), the dot product values
reveal the dimensions of a bystander’s weight vector. To prevent
this attack, we use garbled circuits [9], described below, to compute
whether the dot product exceeds a threshold E without revealing the
dot product itself.

Second, a capture device typically needs to compare several fea-
ture vectors, corresponding to multiple faces that appear in a photo,
to the classifier weight vector of a bystander. For n feature vectors
with m dimensions, the secure dot product computations require
nm encryptions (and n decryptions). We can optimize this compu-
tation as follows.
Optimized n x 1 secure dot product: I-Pic reduces the num-
ber of encryptions from nm to m using ideas from [21]. Con-
sider a matrix V of n vectors with m dimensions each, corre-
sponding to n faces in a photograph, where Vi,j is the jth ele-
ment in the ith vector. Let cj = [V1,j , V2,j , ..., Vn,j ] be the jth
column of V . The photographer computes an encryption of cj as
JcjKpk = J(V1,j) ‖ (V2,j) ‖ ... ‖ (Vn,j)Kpk, where ‖ denotes con-
catenation. This involves only one encryption to produce the ci-
phertext for n values. The photographer sends Jc1Kpk, ..., JcmKpk,
the encrypted user ids (uid) of the discovered bystanders, and pk to
the Bystander Agent. For each bystander, the Bystander Agent com-
putes JvbjcjKpk = (JcjKpk)

vbj for 1 ≤ j ≤ m, where vb is the
classifier weight vector of a bystander. Multiplying these encrypted
values, the Bystander Agent obtains a packed encryption of the dot
products, JP1 ‖ ... ‖ PnKpk = JV1 · vb ‖ V2 · vb ‖ ... ‖ Vn · vbKpk =
Jvb1c1KpkJvb2c2Kpk...JvbmcmKpk and sends it back to the photog-
rapher, who decrypts (using sk) and unpacks the values to recover
the individual dot products.
Garbled circuits for secure threshold computation: Garbled cir-
cuits allow two parties holding inputs x and y, respectively, to eval-
uate an arbitrary function f(x,y) without disclosing their inputs. The

basic idea is that one party (the garbled circuit generator—the Cap-
ture Agent in our setting), prepares an “encrypted” version of a
boolean circuit computing f; the second party (the circuit evaluator—
the Bystander Agent in our case) then obliviously computes the out-
put of the circuit. The combination of secure dot product and gar-
bled circuits can provide the property that the bystander’s session
key is revealed to the capture device if, and only if, there is a match
between an extracted feature vector and the classifier weight vector
of a bystander. The capture device can then decrypt the bystander’s
policy.

4.3 Secure matching protocol

Photographer Bystander j

[uidj]kj 
, [pol]kj

Bystander-agent

Garbled(k1 or 0, …, kb or 0)
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Garbled(P'11,…,P'1n ... P'b1,...,P'bn)

Figure 4. I-Pic secure matching protocol for one image
with n faces (each facial feature vector has m dimen-
sions). The photographer receives an advertisement from
one of b bystanders (blue). The secure dot product com-
putation requires one round trip (red). The garbled circuit
(GC) requires a DH key exchange and two rounds of obliv-
ious transfers (OT) (green).

An example message exchange of the secure matching proto-
col for one image with n detected faces and b bystanders is shown
in Figure 4. The photographer’s device computes the m encrypted
column vectors according to the “optimized n x 1” secure dot prod-
uct protocol, which requires m encryptions. The device sends these
vectors to the Bystander Agent (via the Capture Agent) along with
the encrypted user ids of the b bystanders (Message 2 and 3 in Fig-
ure 4).



The I-Pic Bystander Agent1 now looks up the classifier weight
vectors of the b bystanders. For each bystander, it computes the en-
crypted packed dot products, JPi,1 ‖ Pi,2 ‖ ... ‖ Pi,nKpk, 1 ≤ i ≤
b, of the bystander feature vector and the n image feature vectors.
Secure thresholding The Bystander Agent computes obscured en-
crypted packed dot products, JP ′i,1 ‖ P ′i,2 ‖ ... ‖ P ′i,nK, 1 ≤ i ≤ b,
by adding a different random value Ri,j to each dot product Pi,j ,
for 1 ≤ i ≤ b, 1 ≤ j ≤ n. This is performed by multiplying each
of the b packed encrypted values containing n dot products each,
JPi,1 ‖ Pi,2 ‖ ... ‖ Pi,nKpk, with JRi,1 ‖ Ri,2 ‖ ... ‖ Ri,nKpk for
1 ≤ i ≤ b. These obscured encrypted packed dot products are sent
to the photographer’s device via the Capture Agent (Message 6 and
7).

The photographer’s device decrypts the b packed encrypted val-
ues containing n obscured dot products each, which requires b de-
cryption operations. The device forwards these obscured dot prod-
ucts to the Capture Agent (Message 8), which then constructs a
garbled circuit that takes as input n obscured dot products P ′i,j =
Pi,j+Ri,j , n random values Ri,j , a session key Ki, and the thresh-
old E (all provided by the Bystander Agent), for 1 ≤ i ≤ b, 1 ≤
j ≤ n. The circuit computes

f(P ′i,j , E , Ri,j ,Ki) =

{
Ki if P ′i,j > E +Ri,j

0 Otherwise

that is, the circuit reveals a bystander’s session key iff the dot
product of the bystander’s classifier weight vector and an image
feature vector exceed the threshold.

Delivering the Bystander Agent’s inputs to the garbled circuit
requires a Diffie-Hellman key exchange (DH) and two rounds of
oblivious transfers (NPOT [22] and OTEXT [23]), which are partly
piggy-backed on the secure dot product protocol messages, and
shown in Figure 4 (Messages 4, 5, 6 and 9). The Capture Agent
now sends the circuit to the Bystander Agent, along with the gar-
bled values of the obfuscated inputs P ′i,j , and the garbled values of
Bystander Agent’s inputs as part of the OTEXT oblivious transfer
(Message 9). The Bystander Agent executes the circuit b times with
the appropriate inputs, and returns the garbled results to the Cap-
ture Agent (Message 10). After ungarbling the results, the Capture
Agent returns the session keys for the matched bystanders to the
photographer’s device (Message 11).

As composed, the matching protocol has the desired property
that a photographer learns a bystander’s current session key if and
only if a feature vector in the image matches that bystander’s clas-
sifier weight vector. Garbled circuits also ensure that the Bystander
Agent does not learn whether there was a match between the en-
crypted facial feature vectors and a bystander. Additionally, no
principal learns the vectors held by the other principals nor the mag-
nitude of the dot products.

Note that the Capture Agent is trusted to construct the garbled
circuit correctly. This requirement could be relaxed if one is willing
to run additional checks [24] at some additional computational and
runtime overhead.

5. EVALUATION

We have prototyped I-Pic on Android version 4.4.2. In our de-
ployment, we used a Google Project Tango Tablet [25] as the pho-

1To simplify exposition, the description here assumes a single By-
stander Agent service. The capture device would have to execute
the protocol for each Bystander Agent in case more than one is dis-
covered.

tographer’s capture device and Galaxy Nexus2 phones as bystander
devices. The Nexus phones advertised their presence once every
640ms over BLE.

We ported HeadHunter [6] to Android for face detection. Head-
Hunter is optimized for execution on CUDA-enabled GPUs [26];
the Tango Tablet allows us to access CUDA cores. The camera
output on the tablet (available as a JPEG file) is first histogram
equalized [27] and then resized to 640x360 before being input to
HeadHunter. HeadHunter outputs bounding boxes corresponding
to detected faces.

To extract feature vectors from facial images, we used an An-
droid port of the Caffe framework [28] and ran it with our FNet
neural network. The extracted vectors were normalised such that
each feature value was in the range [0, 1]. We ported existing Java
secure dot product and garbled circuit implementations [29] to C++
on Android to optimize for runtime and energy consumption. The
various agents were implemented as HTTP servers.

We begin with a description of I-Pic deployments in various set-
tings; these deployments were also approved by the University of
Maryland IRB. While we gained intuition about our vision pipeline
using standard face recognition datasets (and the pipeline’s perfor-
mance compares well with the state-of-the-art on them), all results
presented here evaluate I-Pic on images captured “in the wild”,
reflecting spontaneous image capture in different social situations
with a range of lighting conditions, camera angles, distances, and
poses.

5.1 Deployments
To evaluate I-Pic, we registered fifteen volunteers from our in-

stitutions using the registration procedure detailed in Section 4.1.
Each volunteer received a Galaxy Nexus device for BLE advertise-
ment, which they carried on their person. Registered users could
choose to either show or blur their face when photographed; this
setting could be changed at their discretion.

The photographs in our results were captured over three days
(see Table 3), and were taken using the Tango tablet and a DSLR
camera. We used the DSLR setup (Sony A7, 35mm f/2.8 lens, 1/80
fixed exposure time with Sony HVL-F32M flash) to simulate bet-
ter tablet cameras with higher resolution and faster apertures ex-
pected in future tablets. The photographs captured by the DSLR
were manually fed into the I-Pic processing pipeline.

We annotated all photographs manually with ground truth face
rectangles using the open source annotation tool Sloth [30]. For
each face, we manually added other information, such as the iden-
tity of registered users, pose, and lighting condition.

Date Capture device Number of Number of
photographs ground-truth faces

Nov 20 Tango tablet 81 277
Nov 27 Tango tablet 176 553
Dec 02 DSLR 130 843

All 387 1673
Table 3. Experimental dataset

5.2 I-Pic decision tree
In I-Pic, faces in photographs end up being edited (e.g., blurred)

or remain unchanged, correctly or incorrectly, depending on de-
cisions made by different subsystems. Figure 5 shows the possible
paths through I-Pic, culminating in leaf nodes colored green if I-Pic
preserves user privacy and red if it does not. Note that it is possible

2Galaxy Nexus has Bluetooth hardware capable of BLE advertis-
ing, but the functionality is not available via standard API calls. We
patched the kernel to enable BLE advertising.
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for I-Pic to make a mistake, e.g., not recognize a face, and for the
corresponding path to still lead to a green leaf node, e.g., because
the user policy stated not to obscure their face. Finally, some leaf
nodes are grey, corresponding to privacy irrelevant mistakes where
non-faces were detected as faces and possibly blurred.

Understanding this decision tree, and in particular, analyzing
where privacy-relevant errors can accrue, will enable us to param-
eterize and evaluate our vision pipeline in the context of I-Pic’s
overall goal.

The decision tree has three stages: (1) face detection, (2) face
recognition and (3) policy application. Stages 1 and 2 are computa-
tional and depend solely on the accuracy of the vision pipeline. The
diagram separates these from Stage 3, which is contingent on user
choices. For instance, if users choose more permissive policies,
then errors from previous stages will less likely result in privacy
violations, and vice-versa.

Face Detection: Stage 1 may result in three outcomes: True Posi-
tive (TP ), where I-Pic detects a face marked in ground truth; False
Positive (FP ), where I-Pic detects a non-face object as a face; or
False Negative (FN ), where I-Pic does not detect a face marked
by ground truth. All TP and FP detections are passed to the face
recognition engine in the next stage.

The FN faces bypass the I-Pic pipeline and remain unchanged,
and can potentially lead to a privacy violation (red leaf node). To
minimize these cases, we bias the face detection engine towards

higher recall (lower FN ) at the expense of lower precision (higher
FP ). This means that a non-face object occasionally gets blurred in
an image, in exchange for increased privacy.

Face Recognition: For a TP face detection output, there are six
possible choices for recognition in the I-Pic pipeline: (1) True Pos-
itive (TP ), where the detected face is matched only with the indi-
vidual identified in ground truth; (2) True Positive along with False
Positives (TP∗), where the face is matched with the ground truth in-
dividual, but also with others3; (3) False Negative (FN ), where the
face is not matched with the ground truth person; (4) False Neg-
ative along with False Positives (FN∗): I-Pic does not match with
the ground truth, but instead matches with one or more other reg-
istered individuals; (5) True Negative (TN ), where I-Pic correctly
does not match the face to any registered individual; and (6) False
Positive(s) (FP∗), where I-Pic incorrectly matches the face to one
or more registered users.

Two leaf nodes have privacy violations for face recognition. FP
is responsible for both paths, while one of them also requires a FN .
Thus lower FP or high precision has higher priority for recogni-
tion, and adequate balance with low FN or high recall is also nec-
essary. These requirements guide the parameterization of the I-Pic
face recognition engine.

3We allow multiple matches; any registered face that exceeds a sim-
ilarity threshold is considered a match.



Misdetected faces (FP in detection) are also fed into the recog-
nition protocol, and may lead to (1) True Negatives (TN ) whereby
I-Pic does not recognize the “face” as a registered user, or (2) False
Positives (FP∗) where I-Pic mistakenly matches the “face” to one
or more registered users.

Policy: Each detected face leads to an action, as shown by the
leaves of the tree. If the recognition engine outputs a single user,
then the action corresponding to that users’ policy is undertaken.
However, in cases of multiple matches, e.g., due to TP∗, FN∗ or
FP∗, the most restrictive policy chosen by any “recognized” user is
applied. For all unrecognized users, I-Pic blurs faces by default.

We will detail an experiment with 687 faces in 120 images to
examine I-Pic’s privacy violations in Section 5.3. The percentages
below the leaves in Figure 5 show the fraction of faces that mapped
to each path in the decision tree, in this experiment. As can be
seen from the percentage values, the privacy preferences of 14% of
687 captured faces were violated, primarily due to errors early in
the vision pipeline (face detection). In the next sections, we will
present detailed evaluations of the vision pipeline, whose accuracy
primarily determines I-Pic’s performance.

5.3 I-Pic overall performance

We begin with an evaluation of I-Pic’s overall performance in
terms of its primary goals, which are to (i) respect bystanders’ pri-
vacy, and to (ii) preserve the photographer’s intent to the extent
allowed by subjects’ privacy choices.

Toward this end, we took a sample of 120 images with 687 faces
marked in the ground-truth. We additionally marked each face ac-
cording to its role in the image, as shown in Table 4, along with the
frequency of faces with a given role.

Name Role in photograph Number of occurrences
PP primary subject posing 185
PN primary subject natural 115
BP prominent bystander 56
BO other bystanders 331

Table 4. Roles of faces captured in images

Many of the captured faces correspond to unregistered individ-
uals. Since we don’t know the privacy preferences of these individ-
uals, we assigned them policies manually, so that we can process
each image as if each captured person were registered with a pol-
icy. We assigned the show-face policy to the 185 PP faces, since it
would be inconsistent for a person who poses for a photograph to
refuse to have their face shown. For the remaining 502 faces, we
randomly choose one of show-face or blur-face policies.

The percentage values given at the leaves in Figure 5 show what
fraction of these 687 faces had what outcome when run through the
I-Pic system. As we can see, privacy was violated in 14% of the
cases, while the remaining 86% had no privacy violation.

We also assign a privacy loss score in each case of violation.
These scores provide a subjective measure of the severity of the
privacy violation depending on the role of the face in the image,
with higher scores indicating a more severe violation. The privacy
loss scores are given in Table 5, with the last column indicating how
many of each type of violation occurred in the 687 faces.

About 2% of cases had the most severe privacy violation, which
is to show a primary subject not posing for the camera against their
wishes. Also about 2% of cases had a clearly visible bystander
shown against their wishes, and around 10% were less severe cases,
where a not prominently depicted bystander was not blurred. We
conclude that, overall, I-Pic observes subjects’ policies in most

Privacy loss score penalization scenario occurrences
3 PN privacy violated 15 (2.18%)
2 BP privacy violated 12 (1.75%)
1 BO privacy violated 70 (10.19%)
0 no privacy violated 590 (85.88%)

Table 5. Privacy loss scores

cases (86%). Moreover, violations that did occur were mostly in
the moderate or mild category.

The second aspect of I-Pic’s overall performance is its ability
to preserve the photographer’s intent, to the extent allowed by the
subject’s policies. Similar to the privacy loss score, we can define
a subjective intent loss score, which penalizes blurring a posing
primary subject (score 3), blurring a non-posing primary subject
with a show-face policy (score 2), and bystanders with show-face
policies (score 1) in decreasing order of severity. The ordering is
based on a subjective judgment of intent loss severity when a face
is unnecessarily blurred, based on the face’s role in the image. We
note that our assignment of an intent penalty for the bystander case
is conservative, as it is unclear whether a photographer should have
expectations about capturing bystanders.

Figure 6 shows the intent loss scores for the 120 images, nor-
malized by the maximum intent loss that could occur in a given
image. The images are sorted by increasing number of faces from
left to right. The bars represent the image composition in terms of
roles of the faces depicted in it. I-Pic preserves the photographer’s
intent, as measured by our score, perfectly in 55 (45.8%) of the im-
ages, with the intent loss increasing for pictures with more faces.
The vast majority of intent loss cases are caused by a failure to rec-
ognize the face of a bystander with a permissive policy, combined
with I-Pic’s default policy to blur.

Being focused on privacy, I-Pic biases its choices towards pri-
vacy, including the default policy and the rule to apply the most
restrictive policy in case of multiple matches. As a result, losses
in the vision pipeline come at the expense of intent rather than pri-
vacy. In the following subsections, we investigate circumstances
that lead to imperfections in the vision pipeline, which are causal
for the losses in privacy and intent reported here.

5.4 Vision pipeline analysis
The I-Pic decision tree demonstrates how (and how many) pri-

vacy violations occur as a result of errors in the vision pipeline. An
obvious case is when a face is not detected, and thus not blurred in
post-process. We have identified and manually labeled images with
factors that affect detection and analysis, as we explain next. This
analysis is done with our full image dataset of 387 images, where
1673 faces have been manually marked with ground truth (Table 3).

5.4.1 Factors affecting detection and recognition
The factors labeled in the ground truth (lighting, pose, and size)

greatly affect whether a face is detected or not. We determine
size based on the number of pixels in the image the face occupies;
“small” faces (s-Sm) have a bounding box with at least one dimen-
sion less than 100 pixels4; all other faces are “large” (s-Lg). Pose
is one of “frontal, profile, tilted head” (p-Std); “facing up, down”
(p-Avert); “back turned, obstructed view” (p-Occ). Lighting is one
of “Bright, even lighting” (l-Good); “Low even lighting” (l-Low);
“Backlit, Shadow, Strong directional” (l-Poor).

Figure 7 decomposes face detection recall along these factors,
for our image dataset (Table 3). The figure includes example im-
ages corresponding to different conditions for visual reference. The
recall values for detection can be as high as 95% to as low as 32%,
4The Tango camera produces 2688 x 1520 pixels images and Sony
A7 produces 4240 x 2832 pixels images



based on lighting, face size, and how occluded a face is in a photo-
graph.

The leftmost bar with recall around 32% represents all combi-
nations of factors combined with a partly occluded pose (p-Occ).
20% of the faces in our dataset are in this category. Together with
the faces that suffer from low or poor illumination and an averted
pose (four leftmost bars), they have recall below 50%. Faces in
this category are probably not clearly recognizable even for humans
without contextual information.

  

Figure 7. Face detection accuracy vs. illumination condi-
tions, face poses and face sizes

Face characteristic Recognition recall
l-Good–p-Std–s-Lg 85.22%

l-Good–p-Avert–s-Lg 82.79%
l-Low–p-Std–s-Lg 78.62%

l-Good–p-Avert–s-Sm 67.38%
l-Good–p-Std–s-Sm 66.29%

p-Occ or l-Poor 20.49%

Table 6. Face recognition recall vs. different illumination
conditions, face poses and face sizes

Table 6 shows the face recognition recall for a subset of illu-
mination, pose and size characteristics. Recognition recall is only
meaningful for individuals who are registered in the I-Pic system.
Our 15 registered individuals occured with the subset of conditions
given in Table 6, while only unregistered individuals occured in
other conditions.

p-Occ and l-Poor lead to poor recognition recall. This effect is
intuitive, as occlusion or directional lighting distorts the facial fea-
tures, making it harder to match with registered face models. Addi-
tionally, s-Sm performs worse than s-Lg. Our FNet neural network
scales the input image to 227 x 227 pixels before feature extraction.
Since s-Sm faces are less than 100 pixels in either width or height,
this upscaling potentially affects the face recognition accuracy for
small faces.

Precision for face detection or recognition do not show any marked
correlation under different illumination, pose or size. In summary,
good detection recall (>60%) and excellent recognition recall of
nearly 80% occurs when pose is frontal or averted, illumination is
good or low, or the size is large. This category includes about 65%
of the faces in our images, and represents cases where subjects are
clearly recognizable and privacy is most important.

5.4.2 Mapping back to events
The previous section identified different factors affecting I-Pic’s

face detection and recognition. But in what scenarios can one ex-
pect favorable conditions? In this section, we describe the scenar-
ios in which we have evaluated I-Pic, and catalog photographs and
faces from each scenario according to our factors. We note that pho-
tographers were not aware of these factors when the photographs
were taken.

Table 7 lists four events where we obtained about 64% of our
captured images. These images contain 970 manually annotated
faces; the table lists the number of faces for each context. Fig-
ure 8 shows representative images from each event; Figures 9(a)-
(c), show the illumination, poses and size distribution for these 970
faces.

Context name characteristics illumination
Campus Individuals posing Natural light
(180 faces) outdoors, with some

bystanders present

Social Afternoon tea session with Combination natural and
(237 faces) 40 people in an indoor atrium fluorescent light

Office Daily exchanges in Fluorescent light
(129 faces) offices and corridors

Party Crowded party Back and directional
(424 faces) in small indoor venue lighting from lamps

Table 7. Four different social contexts

Figure 10 plots the recall ( TP
TP+FN

) and precision ( TP
TP+FP

)
for both detection and recognition for the four events. The plot
also includes data for All, corresponding to all 1673 faces in our
evaluation, including those taken outside the four events.
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Figure 10. I-Pic vision pipeline performance

Both detection and recognition recalls depend on contexts: Cam-
pus photographs taken outdoors with favorable poses have high re-
call for both detection and recognition. In contrast, challenging
lighting and occluded faces in the indoor Party context lead to low
recall.

Face recognition precision is high, independent of the social
context. However, face detection precision varies with context.
Manual inspection of the images revealed that busy scenes with
many people have more false positives in face detection. Here, body
parts like ears or hands, or striped clothing, accidentally match the
face detection template of HeadHunter. This shows up as lower
precision in the Social context, which has crowded scenes.

As discussed in Section 5.2, I-Pic is biased towards higher re-
call for face detection and higher precision for face recognition, to



  

      Campus       Social Office Party

Figure 8. Examples images from four events used in evaluating I-Pic.
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Figure 9. Variety in illumination conditions, faces poses and face sizes in different contexts and resulting performance

maximize the privacy scores of the system. Figure 10 shows the
effects of these choices on the vision pipeline performance.

In summary, the Campus, Social, and Office contexts have recall
in the 70-80% range for both face detection and recognition. The
challenging scenarios like Party provide an opportunity for future
vision research. Our image dataset, captured with mobile cameras,
will be very useful to design new vision algorithms, which I-Pic
can incorporate in the future.

5.4.3 Comparison to existing face detectors
We have used our own research prototype, HeadHunter, for face

detection. A natural question to consider is how well existing,
widely used face detectors, such as those bundled with Android
or OpenCV, compare. Table 8 shows the precision and recall for
different face detection libraries on our dataset. HeadHunter vastly
outperforms the competition, justifying its use within I-Pic. Note
that low detection recall, in particular, leads to false negatives in
I-Pic, which can lead to privacy violations.

Library Precision Recall
Android 38.65 5.49

Snapdragon 94.28 5.91
OpenCV 31.27 49.91

HeadHunter 68.47 68.55
Table 8. Comparison of face detection libraries

5.5 Secure Feature Comparison

Next, we present microbenchmarks evaluating the processing
and bandwidth requirements of the secure vector matching protocol
with varying numbers of faces and bystanders. During these exper-
iments, both the cloud agents are running on the same machine and
are on the same 802.11 WiFi network as the I-Pic devices. In each
run of the experiment, we generated feature vectors randomly.

Consider Figures 11 and 12, which show the protocol’s total
runtime latency and its breakdown. Latency includes computations
on the device, on the cloud agents, and the network transit time
between the device and the Capture Agent.

The number of input vectors that have to be encrypted and trans-
mitted increases with the number of faces in the photograph, result-
ing in an expected linear increase in runtime in Figure 11. Figure 12
shows that a major contribution to this runtime is the client side en-
cryption of feature vectors for the secure dot product part of the
protocol (Step 2 in Figure 4). Due to the “n x 1 dot product” opti-
mization, described in Section 4.2, the client side runtime does not
increase significantly with the number of faces.

From separate measurements (not shown in Figure 12) we know
that these client side encryption operations show a 2x reduction in
runtime on mobile platforms supporting a 64bit ARMv8-A instruc-
tion set. 5

Increasing the number of bystanders for a fixed number of faces
increases the runtime linearly, but importantly, it does not signifi-
cantly increase the client-side runtime (Figure 12). This is a desir-
able property as the photographer’s overhead does not signficantly
depend on the number of bystanders in the vicinity.
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Figure 13 shows the data transmitted between the device and
Capture Agent, and between the cloud agents. We observe that
data transmitted between the device and Capture Agent is less than
100KB and it does not increase significantly with the number of

5Measurements are not shown here because the Tango tablet does
not support the ARMVv8-A instruction set.
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faces or bystanders. This figure also shows the effects of adding the
garbled circuit. The garbled circuit affects the data exchanged (and
the latency) between the cloud agents, which increases both with
the number of bystanders and the number of faces. Garbled circuits
are evaluated by the Bystander Agent for each bystander and the
number of inputs to each garbled circuit depends on the number of
faces.

Overall the results show that the secure matching protocol can
be efficiently executed. Moreover, computation can be offloaded to
a significant extent from the client devices to the cloud agents.

5.6 Runtime and Energy Consumption

Figure 14 plots the overall time taken for I-Pic to process dif-
ferent photographs, along with times spent in different vision and
secure matching tasks. In each case, the capture platform received
and processed between 3 and 10 BLE advertisements, with varying
number of faces in the photograph as plotted along the x-axis. The
times for secure matching includes network communication and all
cryptographic functions. Face detection dominates, often requiring
25 seconds per photograph. Recall that the processing takes place
asynchronously in the background, and does not interfere with the
users’ experience while capturing and reviewing images.

While the face detection cost in particular is high in our proto-
type (70–80% of total processing time), we believe it is encouraging
that best-of-breed face detection is feasible on mobile devices avail-
able today. Advances in mobile hardware capabilities, driven in part
by emerging virtual reality applications, will benefit HeadHunter
and other stages of the I-Pic pipeline in the near future. Moreover,
face detection is already being offered as a standard feature on mo-
bile platforms, and future implementations (possibly hardware sup-
ported) with better accuracy could directly benefit I-Pic.
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We measured the energy consumption of the various subcompo-
nents of I-Pic using the Monsoon Power Monitor [31]. We attached
the power monitor to a Nvidia Shield Tablet K1 [32]6 and processed
an image with 30 faces in it. Figure 15 shows the energy consump-
tion for different resolutions of the input image. The face detector
uses the GPU, whereas the feature extraction is CPU bound. En-
ergy consumption of face detection is independent of the number
of faces in an image, whereas it is linear in the number of faces
for feature extraction. The secure matching algorithm was run with
the 30 faces extracted from the image along with 40 simulated by-
standers7.

Image resolution Number of images processed
(pixels) (containing 30 faces each)
320x180 408
480x270 347
640x360 288
800x450 239

Table 9. I-Pic’s projected capacity on a 5100 mAh battery

Using these measurements, Table 9 shows I-Pic’s projected ca-
pacity on the Nvidia Shield tablet, which has a 5100 mAh battery.
More than 288 images and 8640 faces can be processed on a sin-
gle charge. Figure 16 compares the face detection accuracy versus
the resolution of input images, and serves to highlight the trade-
off between accuracy and energy consumption of the prototype.
Reducing the resolution to 480x270 pixels enables the prototype

6We used the Shield tablet for the power measurements because
the Monsoon power monitor is unable to power the Tango tablet.
The latter requires a 7.5 volts power supply whereas the Monsoon
power monitor can only supply a maximum of 4.5 volts.
7BLE scanning for 5 seconds consumes 0.12 mAh of energy, which
is accounted for in Figure 15 but not shown separately.
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Figure 16. Face detection accuracy of I-Pic prototype for
different image resolutions

to process 20% more images, but comes at a high (12%) drop in
face detection recall. On the other hand increasing the resolution
to 800x450 only gives diminishing returns for face detection recall
when compared to the increased energy consumption that accom-
panies it.

6. RELATED WORK
Privacy in the presence of recording devices: Hoyle et al. [33]
seek to understand users’ concerns about continuous recording us-
ing wearable cameras, by studying a large user population of avid
life-loggers. Denning et al. [34] conduct a large scale user survey to
understand bystanders’ privacy concerns in public places like cof-
fee shops and possible ways to mitigate them. Our online survey
additionally shows that privacy concerns are very personal and de-
pendent on the situation.

Roesner et al. [2] present a system that shares a venue’s privacy
preferences with wearable devices in an unobtrusive way. The idea
is to convey privacy expectations associated with places like gyms
and washrooms with broadcast messages or visual signs. The wear-
able devices in the venue pick up these messages or visual cues and
obey the specified privacy protocol. Unlike I-Pic, this system has
no way to associate a privacy policy with an object or person that
appears in an audiovisual recording.

Visual markers to convey privacy policies to nearby wearable
recording devices are also used in [3]. [35] explores the expression
of bystanders’ privacy intent using gestures. Unlike I-Pic, these ap-
proaches require either physical tagging of objects and locations,
or explicit user actions (i.e., gestures) to convey privacy choices.
Moreover, I-Pic enables user-defined, personalized, context-dependent
privacy choices.

In the work by Bo et al. [4], individuals wear clothes with a
printed barcode, which encodes the wearer’s public key. When an
image of an individual showing face and barcode is uploaded to an
image server, the server garbles the face pixels, using the public
key encoded in the barcode. Only the individual who owns the
associated private key can later extract the actual face image. I-
Pic, on the other hand, does not require its users to wear any visual
markers, it does not require users to trust an image server with their
private images, and can support context-dependent privacy policies.

In [36, 37, 38], the authors address privacy concerns in untrusted
perceptual and augmented reality applications, by partially process-
ing media stream within the trusted platform, thus denying apps
access to the raw media streams. An augmented reality app, for
instance, might be provided only with the position of relevant ob-
jects within a video stream sufficient for the app to overlay its own
information, but not the full video. I-Pic also relies on the trusted
platform, but focuses on enforcing individual’s privacy policies re-
garding image capture by nearby devices.

Zero-Effort Payments [39], similar to I-Pic, uses face recogni-
tion and proximate device detection using BLE to identify a user
in an image, but their goal instead is to create a mobile payment
system. Unlike I-Pic, which is tuned to identify even small faces
in diverse range of photographic contexts, their system is meant to
visually identify a user, with human assistance, when she is in close
proximity to the cashier. Furthermore, they acknowledge concerns
of user privacy in such a monitored environment and propose the
use of signage indicating that a face recognition system is deployed
in the area. Such a privacy solution is only viable in select scenar-
ios, and lacks the flexibility provided by I-Pic.
Visual fingerprints: Performance on human identification and re-
identification tasks has greatly improved over the last decade. Most
notably, face recognition on large databases in realistic settings is
even approaching human performance [40]. Besides the identity, a
person can also be described and identified by a set of attributes [41,
42]. I-Pic uses a state of the art face recognition algorithm based on
neural networks, but can benefit from using semantic attributes de-
scribing a face, including features from other body parts in addition
to the face.
Cryptograhic primitives: There is complementary work to protect
the privacy of biometric data [43, 44] by projecting or encrypting
representations. It is possible that these approaches could be used
in I-Pic to further reduce trust in the Cloud service by obscuring
users’ visual signatures.

InnerCircle [45] describes a secure multi-party protocol for lo-
cation privacy, which computes in a single round whether the dis-
tance between two encrypted coordinates is within some radius r.
This computation is similar to I-Pic’s secure dot product and thesh-
olding computation. However, the protocol’s efficiency degrades
exponentially with the number of bits of precision of the distance.
Since our threshold comparison involves dot products of large fea-
ture vectors, we use garbled circuits for the threshold comparison
instead.

7. CONCLUSIONS AND FUTURE WORK
I-Pic allows users to respect each others’ individual and sit-

uational privacy preferences, without giving up the spontaneity,
ubiquity, and flexibility of digital capture. The I-Pic design and
prototype demonstrate that the technical impediments for privacy-
compliant imaging can be reasonably overcome using current hard-
ware platforms. I-Pic leverages cutting-edge face detection and
recognition technology, which is often perceived as a threat to pri-
vacy, to instead increase user’s privacy regarding digital capture.
Future advances in mobile platform hardware and computer vision
will directly benefit I-Pic and further improve the efficiency and
accuracy of its I-Pic privacy enforcement.
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